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1 Introduction
A graph G is a divisor graph if the vertices of G can
be labeled by positive integers such that two distinct
vertices i and j are adjacent if and only if one of the
integers i and j divides the other. In a digraph D,
a vertex with zero indegree is a transmitter, a vertex
with zero outdegree is a receiver, while a transitive
vertex v has nonzero indegree and nonzero outdegree
such that (u,w) ∈ E(D) whenever (u, v) and (v, w)
belong to E(D). An orientation D of a graph G in
which every vertex is a transmitter, a receiver, or a
transitive vertex was called in [1] a divisor orienta-
tion of G. Divisor graphs can be interpreted by the
following characterization which was proved in [6].

Lemma 1 A graph G is a divisor graph if and only if
G has a divisor orientation.

A graph is a comparability graph if its edges can
be directed so that directed adjacency becomes a tran-
sitive relation, see [13]. Thus, divisor graphs are pre-
cisely the comparability graphs.

The converse of a digraph D is the digraph D
′

with V (D) = V (D
′
) and (u, v) ∈ E(D

′
) if and only

if (v, u) ∈ E(D). That is, the digraph D
′

is obtained
from D by reversing the directions of all arcs of D.
The following result was shown in [1].

Lemma 2 If D is a divisor orientation of a graph G,
then the converse of D is also a divisor orientation of
G.

Some classes of graphs which are known to be
divisor graphs are: Complete graphs, bipartite graphs,

and complete multipartite graphs, see [6]. The graph
depicted in Figure 1 was given in [6] as an example
of a nondivisor graph. This graph will be referred to
frequently in this paper. In [1] and [2], complete char-
acterizations of powers of paths and powers of cycles
which are divisor graphs were obtained.

Figure 1: A graph which is not a divisor graph

The Cartesian product of two graphs G and H is
denoted by G�H . Some further properties of divisor
graphs, including the following two characterizations,
were shown in [3].

Lemma 3 Let G and H be two graphs. Then G�H
is a divisor graph if and only if either both G and H
are bipartite or at least one of them has size zero and
the other is a divisor graph.

Lemma 4 Let G be a block graph. Then G is a di-
visor graph if and only if G has no induced subgraph
isomorphic to the graph in Figure 1.

The following two results were proved in [6].
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Lemma 5 Every induced subgraph of a divisor graph
is a divisor graph.

Lemma 6 No divisor graph contains an induced odd
cycle of length greater than 3.

The middle graph M(G) of a graph G has vertex
set V (G) ∪ E(G) where two vertices of M(G) are
adjacent if either they are incident edges inG or one of
them is an edge of G and the other is a vertex incident
to it in G, see [12].

The join of two disjoint graphsG andH , denoted
byG+H , is obtained fromG∪H by adding all edges
xy with x ∈ V (G) and y ∈ V (H). The set of neigh-
bors of a vertex v in a graph is denoted by N(v). For
undefined notions, the reader is referred to [5]. In this
paper, all graphs we consider are connected and con-
tain neither loops nor multiple edges.

2 Cycles and trees
Every cycle is isomorphic to its line graph. Since even
cycles are bipartite graphs andC3 is a complete graph,
the following result follows immediately by Lemma 6.

Proposition 7 L(Cn) is a divisor graph if and only if
either n is even or n = 3.

Now we show that the graph depicted in Figure 2
is a forbidden subgraph in the graph G for L(G) to be
a divisor graph.

Figure 2: A forbidden subgraph in a graphG forL(G)
to be a divisor graph

Proposition 8 If G is a graph containing a subgraph
isomorphic to the graph in Figure 2, then L(G) is not
a divisor graph.

Proof: Let G be a graph containing a subgraph H
which is isomorphic to the graph in Figure 2. Then
L(H) is an induced subgraph of L(G). But L(H) is

isomorphic to the graph in Figure 1, which is not a
divisor graph. Therefore, by Lemma 5, L(G) is not a
divisor graph. ut

A caterpillar is a tree containing a path with the
property that every vertex is at distance at most one
from this path, see [7]. It is obvious that a caterpillar
is a tree that contains no subgraph isomorphic to that
in Figure 2. Now, we will characterize the trees whose
line graphs are divisor graphs. It is well known that
the line graphs of trees are block graphs, see [9].

Theorem 9 Let T be a nontrivial tree. Then L(T ) is
a divisor graph if and only if T is a caterpillar.

Proof: Since T is a tree, we have L(T ) is a block
graph. Note that the line graph of the graph in Figure
2 is just the graph in Figure 1. Assume that L(T ) is
a divisor graph. Then by Lemma 4 we get that L(T )
does not contain the graph in Figure 1 as an induced
subgraph. Thus T does not contain a subgraph iso-
morphic to that in Figure 2, and hence T is a caterpil-
lar.

Conversely, assume that T is a caterpillar. Then T
does not contain the graph in Figure 2 as a subgraph.
Thus the graph L(T ) does not contain an induced sub-
graph isomorphic to that in Figure 1. Therefore by
Lemma 4 we get that L(T ) is a divisor graph. ut

It is clear that the middle graph M(G) of a graph
G contains L(G) as an induced subgraph. Therefore,
by Lemma 5, we have the following result.

Proposition 10 For any graph G, if L(G) is not a di-
visor graph, then M(G) is also not a divisor graph.

Recall that for n ≥ 3, the n-sun is the
graph obtained from the complete graph on the n
vertices u1, u2, · · · , un by adding new n vertices
w1, w2, · · · , wn and adding the edges wiui, wiui+1

(modulo n), for i = 1, 2, · · · , n. Before turning to
the middle graphs of cycles, we consider the 3-sun.

Lemma 11 The 3-sun is not a divisor graph.

Proof: Let G be the 3-sun with V (G) =
{u1, u2, u3, w1, w2, w3}, where {u1, u2, u3} induces
K3 and wi is adjacent to both ui and ui+1 (modulo
3), for i = 1, 2, 3. Assume to the contrary that G is
a divisor graph. Then, by Lemma 1, G has a divi-
sor orientation D. In view of Lemma 2, suppose that
(w2, u2) ∈ E(D). Then, since w2u1, w2w1 /∈ E(G),
we must have (u1, u2), (w1, u2) ∈ E(D). Then we
get (u3, u2) ∈ E(D) because w1u3 /∈ E(G). Now
distinguish two cases:

Case (1) (w1, u1) ∈ E(D).
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Then, since w1w3 /∈ E(G), we must have
(w3, u1) ∈ E(D). Thus we have (w3, u1), (u1, u2) ∈
E(D) while (w3, u2) /∈ E(D), a contradiction.

Case (2) (u1, w1) ∈ E(D).
Then, since w3w1, u3w1 /∈ E(G), we must have

(u1, w3), (u1, u3) ∈ E(D). Then we have (w2, u3) ∈
E(D) because u1w2 /∈ E(G). But w2w3 /∈ E(G),
so we must have (w3, u3) ∈ E(D). Thus we have
(w3, u3), (u3, u2) ∈ E(D) while (w3, u2) /∈ E(D), a
contradiction.

Therefore G is not a divisor graph. ut
The following lemma assures that the middle

graph of a graph containing a triangle or an induced
3-star is not a divisor graph.

Lemma 12 If the middle graph M(G) of a graph G
is a divisor graph, thenG is triangle-free and contains
no induced K1,3.

Proof: Assume that G contains a triangle 1231.
Then the set {1, 2, 3, 12, 13, 23} induces in M(G) a
3-sun. Therefore, by Lemma 5, M(G) is not a divisor
graph. Next, assume that K1,3 is an induced subgraph
of G. Let V (K1,3) = {x, 1, 2, 3} and E(K1,3) =
{1x, 2x, 3x}. Then the set {1, 2, 3, 1x, 2x, 3x} in-
duces in M(G) a subgraph isomorphic to that in Fig-
ure 1. Thus, by Lemma 5, M(G) is not a divisor
graph. ut

Now we can determine the values of n for which
M(Cn) is a divisor graph.

Theorem 13 M(Cn) is a divisor graph if and only if
n is even .

Proof: For odd n > 3, the middle graph M(Cn)
is not a divisor graph according to Proposition 7 and
Proposition 10. The middle graph M(C3) is not a
divisor graph, by Lemma 12. Let Cn be the cycle
x1x2...xnx1 where n is even, and for 1 ≤ i ≤ n let ei
be the edge xixi+1, where the index is computed mod-
ulo n. Define the orientation D of M(Cn) as follows:
For odd i, let ei be a receiver, and for even i, let ei be a
transmitter. Note that ei and ei−1 are the only neigh-
bors of xi in M(Cn), where the index is computed
modulo n. Now, if i is odd, then (ei−1, xi), (xi, ei)
and (ei−1, ei) belong to E(D). And if i is even,
then (ei, xi), (xi, ei−1) and (ei, ei−1) belong toE(D).
Thus for every i, the vertex xi is a transitive vertex
in D. Then D is a divisor orientation of M(Cn).
Therefore M(Cn) is a divisor graph. ut

Note that the paths are precisely the K1,3-free
trees.

Theorem 14 For any tree T , the middle graph M(T )
is a divisor graph if and only if T is a path.

Proof: Let T be a tree which is not a path. Then T
contains a K1,3. Thus, by Lemma 12, M(T ) is not a
divisor graph. So, assume that T is the path Pn. The
graphs M(P1) = K1 (complete) and M(P2) = P3

(bipartite) are divisor graphs. For n ≥ 3, let Pn be the
path 12...n and let ei (1 ≤ i ≤ n−1) be the edge i(i+
1). Define the orientation D of M(Pn) as follows:
Let ei be a transmitter when i is even, and a receiver
when i is odd. Then the vertex 1 is a transmitter in D,
and the vertex n is a transmitter when n is even and a
receiver when n is odd. For each 2 ≤ i ≤ n − 1, the
vertex i has exactly two neighbors ei−1 and ei. When i
is even we have (ei, i), (i, ei−1) and (ei, ei−1) belong
toE(D), while when i is odd we have (ei−1, i), (i, ei)
and (ei−1, ei) belong to E(D). Thus for 2 ≤ i ≤
n− 1, the vertex i is a transitive vertex in D. Then D
is a divisor orientation of M(Pn). Therefore M(Pn)
is a divisor graph. ut

3 Complete and complete multipar-
tite graphs

The vertex set of the complete k-partite graph
Kr1,r2,··· ,rk consists of k disjoint sets having cardinal-
ities r1, r2, · · · , rk and each vertex is adjacent to all
others except those in the same set. If the k sets have
the same cardinality r, then the complete k-partite
graph Kr,r,··· ,r is denoted by Kk(r). The graph Kk(2)

is called the cocktail graph or the k-dimensional octa-
hedral graph, see [4].

The line graphs of complete graphs are divisor
graphs only for small complete graphs, as the follow-
ing result says.

Theorem 15 For n > 1, the line graph L(Kn) is a
divisor graph if and only if n < 5.

Proof: For n = 2, 3, the graph L(Kn) is com-
plete, and hence L(Kn) is a divisor graph. The graph
L(K4) is the octahedron graph K3(2) (multipartite).
Thus L(K4) is a divisor graph. So, suppose that
n ≥ 5 and let V (Kn) = {1, 2, ..., n}. Then the set
{12, 13, 14, 52, 53, 54} of vertices induces in L(Kn)
a subgraph isomorphic to K2�K3. But, by Lemma 3,
K2�K3 is not a divisor graph. Therefore, by Lemma
5, L(Kn) is not a divisor graph. ut

The graphs M(K1) and M(K2) are divisor
graphs. Thus, in view of Proposition 10 and Lemma
12, we have the following result.

Theorem 16 M(Kn) is a divisor graph if and only if
n < 3.
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Now we will show that L(G) and M(G) cannot
be divisor graphs whenever G contains K2,3. This re-
sult will be needed in the rest of this section.

Proposition 17 Let G be a graph containing K2,3.
Then L(G) and M(G) are not divisor graphs.

Proof: Clearly, L(K2,3) = K2�K3 is an induced
subgraph of L(G). Then, by Lemma 3 and Lemma 5,
L(G) is not a divisor graph. Thus, by Proposition 10,
also M(G) is not a divisor graph. ut

Before turning to the line graphs of complete mul-
tipartite graphs, let us settle the case of complete bi-
partite graphs.

Lemma 18 L(Km,n) is a divisor graph if and only if
either min{m,n} = 1 or m = n = 2.

Proof: The line graph L(K1,n) is the complete graph
Kn, which is a divisor graph. The line graph L(K2,2)
is just C4, which is a divisor graph. Suppose that
min{m,n} ≥ 2 and max{m,n} ≥ 3. Then Km,n

contains a subgraph isomorphic to K2,3. Thus, by
Proposition 17, L(Km,n) is not a divisor graph. ut

Now we are in a position to characterize those
complete k-partite graphs whose line graphs are di-
visor graphs. They are namely K1,n (n ≥ 1), K2,2,
K2,1,1, K1,1,1 and K1,1,1,1.

Theorem 19 The line graph of the complete k-partite
graph Kr1,r2,··· ,rk is a divisor graph if and only if one
of the following conditions holds:

(1) k ≤ 4 and ri = 1 for every i.
(2) k = 2 and either r1 = r2 = 2 or

min{r1, r2} = 1.
(3) k = 3 and rt = 2 for some t with ri = 1 for

every i 6= t.

Proof: Let G = Kr1,r2,··· ,rk . If ri = 1 for every i,
then G = Kk. Thus, by Theorem 15, L(G) is a divi-
sor graph if and only if k ≤ 4. If k = 2, then the re-
sult follows by Lemma 18. So suppose that k ≥ 3 and
there exists i such that ri ≥ 2. Without loss of gener-
ality, we can assume that i = 1. Let U1, U2, · · · , Uk
be the parts of the complete k-partite graph G with
cardinalities r1, r2, · · · , rk, respectively. Consider the
following three cases:

Case (1) k ≥ 4.
Let S = {a, b, x2, x3, x4}, where a, b ∈ U1 and

xi ∈ Ui for i = 2, 3, 4. Then the subgraph of G in-
duced by S contains a subgraph isomorphic to K2,3.
Therefore, by Proposition 17, L(G) is not a divisor
graph.

Case (2) k = 3 and r1 ≥ 3.

Let S = {a, b, c, x2, x3}, where a, b, c ∈ U1 and
xi ∈ Ui for i = 2, 3. Then the subgraph of G induced
by S contains a subgraph isomorphic to K2,3. There-
fore, by Proposition 17, L(G) is not a divisor graph.

Case (3) k = 3 and r1 = 2.
If at least one of U2, U3 has more than one el-

ement. Then the set S = {a, b, x, y, z}, where
a, b ∈ U1 and x, y, z ∈ U2 ∪ U3, induces in G a
subgraph containing K2,3. Therefore, by Proposition
17, L(G) is not a divisor graph. So, suppose that
|U2| = |U3| = 1. Then G = K2 + 2K1, and hence
L(G) = W1,4. But W1,4 has a divisor orientation in
which the vertex of degree 4 in W1,4 is made a trans-
mitter and two other nonadjacent vertices are made
receivers. Therefore L(G) is a divisor graph. ut

The following result shows that among all multi-
partite graphs, the middle graphs of only three bipar-
tite graphs (namely: K1,1, K1,2 and K2,2) are divisor
graphs.

Theorem 20 The middle graph M(Kr1,r2,...,rk) is a
divisor graph if and only if k = 2 and max{r1, r2} ≤
2.

Proof: In view of Proposition 10 and Theorem 19,
we need only to study the three cases in the statement
of Theorem 19. When k ≤ 4 and ri = 1 for every i,
the multipartite graphKr1,r2,...,rk equalsKk. Thus, by
Theorem 16, only M(K1,1) is a divisor graph. Since
K2,2 = C4, we have M(K2,2) is a divisor graph by
Theorem 13. For every n ≥ 3, we have M(K1,n) is
not a divisor graph according to Lemma 12. The mid-
dle graph M(K1,2) has a divisor orientation in which
one of the edges ofK1,2 is taken as a transmitter while
the other edge is a receiver, hence M(K1,2) is a divi-
sor graph. Finally, M(K2,1,1) is not a divisor graph,
by Lemma 12. ut

4 Cycle permutation graphs
For n ≥ 3, a cycle permutation graph Pα(Cn) con-
sists of two copies of the n-cycle 12 · · ·n1 such that
every vertex i of one copy is adjacent to the vertex
α(i) in the other copy, where α is a permutation on
V (Cn), see [10]. The Petersen graph is the cycle per-
mutation graph Pα(C5) where α is the permutation(

1 2 3 4 5
2 4 1 3 5

)
.

The following result shows that the line graph
(and hence the middle graph) of a cycle permutation
graph is never a divisor graph.

Theorem 21 For n ≥ 3, the graphs L(Pα(Cn)) and
M(Pα(Cn)) are not divisor graphs.
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Proof: Consider the following three cases:
Case (1) n ≥ 5.
Let α(i) ∈ N(α(3))− {3} in the graph Pα(Cn).

Then the set {12, 23, 34, 45, 3α(3), α(3)α(i)} of ver-
tices induces in L(Pα(Cn)) a subgraph isomorphic
to the graph in Figure 1. Therefore, by Lemma 5,
L(Pα(Cn)) is not a divisor graph.

Case (2) n = 4.
Let α(i) ∈ N(α(3)) − {3} in the graph

Pα(Cn) such that α(i) 6= α(4). Then the set
{12, 23, 34, 3α(3), 4α(4), α(3)α(i)} of vertices in-
duces in L(Pα(Cn)) a subgraph isomorphic to the
graph in Figure 1. Therefore, by Lemma 5,
L(Pα(Cn)) is not a divisor graph.

Case (3) n = 3.
Note that Pα(C3) is just K2�K3 for any α.

Let V (K2) = {a, b} and V (K3) = {1, 2, 3}.
Then the six vertices (a, 1)(a, 2), (a, 1)(a, 3),
(a, 2)(a, 3), (a, 1)(b, 1), (a, 2)(b, 2), (a, 3)(b, 3) in-
duce in L(Pα(C3)) a 3-sun. Therefore, by Lemma
11 and Lemma 5, L(Pα(C3)) is not a divisor graph.
Thus, by Proposition 10, also M(Pα(Cn)) is not a di-
visor graph for any n ≥ 3. ut

5 Conclusion
Note that all trees are divisor graphs. But in view of
Theorem 9, L(T ) is a divisor graph for some trees T ,
and L(T ) is not a divisor graph for other trees T . On
the other hand, the graph of Figure 1 as well as its line
graph (which is the 3-sun) are not divisor graphs. It
would be interesting to determine whether the condi-
tion that G is a divisor graph is necessary for L(G) to
be a divisor graph.

Graph theory is fundamental in computer science.
For using graph theory in a modern way attractive to
students, the reader is referred to [11]. Graphs are es-
sentially used in modelling communication networks,
see for example [8].

In this paper we have obtained some characteriza-
tions concerning divisor graphs. As mentioned in the
introduction, divisor graphs are also known as compa-
rability graphs. It is shown in [14] that in many media
applications the stream interference graphs are com-
parability graphs or decomposable into comparability
graphs.
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